
Assessing soil carbon vulnerability in the Western
USA by geospatial modeling of pyrogenic
and particulate carbon stocks
Zia U. Ahmed1,2 , Peter B. Woodbury2, Jonathan Sanderman3,4 , Bruce Hawke3 , Verena Jauss3,
Dawit Solomon2 , and Johannes Lehmann2,5

1International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh, 2Crop and Soil Sciences Section,
School of Integrative Plant Science, Cornell University, Ithaca, New York, USA, 3CSIRO Land and Water, Glen Osmond, South
Australia, Australia, 4Woods Hole Research Center, Falmouth, Massachusetts, USA, 5Atkinson Center for a Sustainable
Future, Cornell University, Ithaca, New York, USA

Abstract To predict how land management practices and climate change will affect soil carbon cycling,
improved understanding of factors controlling soil organic carbon fractions at large spatial scales is
needed. We analyzed total soil organic (SOC) as well as pyrogenic (PyC), particulate (POC), and other soil
organic carbon (OOC) fractions in surface layers from 650 stratified-sampling locations throughout Colorado,
Kansas, New Mexico, and Wyoming. PyC varied from 0.29 to 18.0mgCg�1 soil with a mean of 4.05mgCg�1

soil. The mean PyC was 34.6% of the SOC and ranged from 11.8 to 96.6%. Both POC and PyC were highest in
forests and canyon bottoms. In the best random forest regression model, normalized vegetation index
(NDVI), mean annual precipitation (MAP),mean annual temperature (MAT), and elevation were ranked as the
top four important variables determining PyC and POC variability. Random forests regression kriging (RFK)
with environmental covariables improved predictions over ordinary kriging by 20 and 7% for PyC and POC,
respectively. Based on RFK, 8% of the study area was dominated (≥50% of SOC) by PyC and less than 1% was
dominated by POC. Furthermore, based on spatial analysis of the ratio of POC to PyC, we estimated that
about 16% of the study area is medium to highly vulnerable to SOC mineralization in surface soil. These are
the first results to characterize PyC and POC stocks geospatially using stratified sampling scheme at the scale
of 1,000,000 km2, and the methods are scalable to other regions.

1. Introduction

Soils contain two to three times as much carbon as does the atmosphere [Scharlemann et al., 2014; Schmidt
et al., 2011; Trumbore, 2009]. Thus, small changes in soil organic carbon (SOC) pools can have large impacts on
concentrations of CO2 in the atmosphere. Changes in SOC are driven by land management practices includ-
ing land use change, as well as by environmental factors including ongoing climatic change [Schmidt et al.,
2011]. However, different fractions of SOC vary tremendously in their longevity in soil, with particulate
organic carbon (POC) being highly vulnerable to rapid turnover of between months and a few years and
pyrogenic carbon (PyC) often having very high persistence of decades to thousands of years [Schmidt
et al., 2011]. Because of the long residence time of PyC in soils, and the influence PyC has on soil properties,
fire can be considered as a soil-forming factor [Certini, 2014].

The ability to predict how SOC will respond to ongoing climatic change and land management practices
depends on using Earth systems models at continental to global scales and land management models at
local, regional, and national scales [Tonitto et al., 2016]. Models of soil organic matter dynamics such as
CENTURY and RothC represent soil organic matter (SOM) in conceptual pools with different turnover times
[Parton et al., 1987; Jenkinson and Rayner, 1977]. Much research effort has focused on linking these conceptual
pools with measurable pools of SOC, but since stable SOC pools such as PyC can be very long lived, accurate
parameterization of such pools is critical for model prediction accuracy [Falloon et al., 2000; Lehmann et al.,
2008]. Numerous investigators have quantified spatial patterns of total SOC [Minasny et al., 2013].
However, spatially explicit information on different forms of SOC, such as PyC, and thus vulnerability to miner-
alization, is lacking, particularly at scales as large as 1,000,000 km2 and for ecosystems besides boreal forests
[e.g., Soucémarianadin et al., 2014] and limited data for native grasslands [e.g., Glaser and Amelung, 2003;
Rodionov et al., 2010].
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Limited spatial assessments have shown that the distribution of PyC in soil is highly variable. It may
depend on climatic factors [Glaser and Amelung, 2003; Jauss et al., 2015], on vegetation [Lehmann
et al., 2008], on moisture levels [Kane et al., 2007], or on other factors such as erosion [Rumpel
et al., 2006]. However, no large-scale spatial analyses have determined which factors are most impor-
tant in controlling PyC distribution in landscapes. For these reasons, we selected a fire-prone region
with a wide range in elevation, climate, and ecosystem types including forests, grasslands, shrublands,
and arable lands comprising the states of Kansas, Colorado, New Mexico, and Wyoming, USA
(1,051,029 km2). Very few PyC data are available for this region. In the northern and eastern portions
of the region, PyC at five grassland sites was analyzed [Glaser and Amelung, 2003], but no geospatial
analysis would be possible with so few samples. Moreover, the topic of PyC in soils in forests of the
Rocky Mountain West has been reviewed [DeLuca and Aplet, 2008], but this review presented only a
qualitative description of the mechanisms of PyC sequestration because data on PyC contents of soils
were not available.

Our overall goal was to develop a map of SOC vulnerability by geospatial modeling of relatively persis-
tent (PyC) and easily mineralizable (POC) fractions of SOC. Our specific objectives were to (1) quantify
spatially explicit stocks of PyC, POC, and other soil organic carbon (OOC) fractions and (2) quantify the
role of climate, fire regime, terrain variables, land cover, and vegetation drivers in controlling the spatial
distribution of PyC, POC, and OOC throughout the 1,000,000 km2 region.

2. Materials and Methods
2.1. Study Region

We used 650 soil samples from Colorado, Kansas, New Mexico, and Wyoming. These samples were col-
lected by the United States Geological Survey (USGS) as a part of the USGS Geochemical Landscapes
Project [Smith et al., 2011]. The total area of the study region is approximately 1,051,029 km2 and was cho-
sen for its highly variable topography, vegetation zones, climate, and fire regimes. It encompasses the
Rocky Mountains in the west, grassland prairie of the Great Plains in the center, and Alluvial River and
Osage Plains in the east. The mean altitude above sea level is 662m, ranging from< 300m in the east
(Alluvial River Plains and Osage Plains in KS) to> 4000m in the west (Rocky Mountains) (Figure 1a).
The climate in this region varies greatly. Mean annual temperatures range from less than �5°C in the high
elevations to greater than 15°C in the southern and southeastern portions (Figure 2a and Table S1 in the
supporting information). While some southern portions of the region typically have 70 to 100 days each
year over 32°C, the northern portions typically have only 10 to 20 days above 32°C [Global Climate
Change Impacts in the United States, 2009]. Mean annual precipitation ranges from less than 200mm
in the western Great Plains that are in the rain shadow of the Rocky Mountains to more than 2000mm
in the east (Figure 2b and Table S1). These diverse environmental conditions are reflected by variation in land
cover. The largest area is under grasslands (31%) in the High Plains and shrublands (31%) in semiarid regions
of the Great Plains followed by cultivated land (15%) in plains and forest (15%) in high-altitude portions of
the Rocky Mountains (Figure 2f).

2.2. Soil Sampling and Preparation

The soil samples were collected throughout the A horizon with sampling densities of 1 sample per ~1600 km2

[Smith et al., 2011]. The sampling strategy was a generalized random tessellation stratified design [Smith et al.,
2011]. If a target site was inaccessible for any reason, an alternative site was chosen as close as possible to the
original site, matching the landscape and soil characteristics of the original site. Sites were also not sampled
near roads (50 to 200m depending on road size) or buildings (100m) or downwind of major industrial sites
(5 km). Samples were air dried and sieved through a 2mm stainless steel screen and then crushed to
<150μm in a ceramic mill.

2.3. Soil Analysis

The concentration of SOC fractions was predicted by means of mid-infrared (MIR) spectroscopy and par-
tial least squares regression (PLSR) analysis using methods based on algorithms by Haaland and Thomas
[1988] (PLSplus/IQ™, Thermo-Electron GRAMS™) described previously [Janik et al., 2007]. The acquired MIR
spectra were truncated to 6000–1030 cm�1, baseline-corrected utilizing a simple baseline offset, and
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Figure 1. Spatial variation in topographic variables including (a) elevation, (b) slope gradient, (c) slope length, (d) aspect, (e)
vertical curvature, (f) horizontal curvature, (g) topographic position index (2000m× 2000m), and (h) topographic position
in relation to slope gradient.
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mean centered, all using the Unscrambler 10.2 software (CAMO Software AS, Oslo, Norway). Following this
spectral preprocessing, predictions for total organic carbon (SOC), particulate organic carbon (POC), other
organic carbon (OOC), and pyrogenic carbon (PyC) were made in Unscrambler, using MIR PLSR calibration
models from a large Soil Carbon Research Project (SCaRP) conducted in Australia [Baldock et al., 2013b].
The content of soil OC and its fractions in a subset of these calibration data (n= 312) were measured
using an automated Dumas combustion carbon analyzer. The POC fraction was measured based on the
amount of OC retained on a 53μm sieve and PyC was measured using ultraviolet photooxidation and
HF treatment followed by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy [Janik et al.,
2007]. The OOC fraction was calculated as the soil OC minus POC and PyC fractions. Calibration models
for POC, OOC and PyC were produced from these 312 samples. The details of the methodology for deter-
mining these fractions and the resultant data used to produce MIR PLSR calibration models for each of
the fractions are described in Baldock et al. [2013a]. This fractionation analysis was an improvement on
methods used to produce previous MIR soil organic carbon fractionation calibration models [Janik
et al., 2007] in that it was an automated approach and that it allowed for allocation of PyC to both the
53–2000μm and the <53μm size fractions. Prediction data generated from the Unscrambler consisted
of predicted values with associated deviation or uncertainty values which can be used to calculate an esti-
mate of a 95% confidence interval about the predicted value. In addition, a sample inlier distance and
Hotellings T2 distance can be used to determine how well represented the predicted samples were in
the calibration sample set based on their spectral characteristics. This enabled the identification of outlier
samples which could be excluded from further analysis. The recovery of SOC within the fractions was cal-
culated as a percentage (equation (1)) and an absolute deviation (equation (2)) where PyC, POC, OOC, and
SOC are all expressed in units of mgCg�1 soil.

Figure 2. Spatial variation in the independent variables used in the model including (a) mean annual temperature, (b) mean annual precipitation; (c) soil silt + clay,
(d) fire regime group; (e) mean normalized difference vegetation index (NDVI) for the month of June and July from 2000 to 2011; and (f) land cover in nine classes as
reclassed from the NLCD (see text for details).
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Recovery %ð Þ ¼ PyCþ POCþ OOCð Þ
SOC

�100 (1)

Absolute deviation ¼ PyC þ POC þ OOCð Þ � SOC (2)

It should be noted that expressing the recovery of SOCwithin the fractions as a percentage of SOC can bemis-
leadingwhenSOC contents are low. Under such conditions smallmeasurement errors or sample variability can
translate into a large deviation from 100% recovery. To create a more robust data set for further analysis, only
samples for which the absolute deviation between the sum of OC in all fractions and the analyzed SOC was
within ± 5mgCg�1 soil and percent PyC and POC is less than 100 were selected; these comprised 73% of the
total (473/650).We used this subset of 473 samples for further statistical analysis andmapping of PyC and POC.

As mentioned above, the calibration data set includes only Australian soils; and therefore, it is important to
evaluate its efficacy for predictions for U.S. soils. We therefore validated our MIR predicted values for total
C and SOC using independent data set from the United States Geological Survey [Smith et al., 2014]. Total
C (TC) was determined by the use of an automated carbon analyzer at 1370°C to oxidize C to carbon dioxide
(CO2), and the CO2 gas was measured by a solid state infrared detector. The concentration of SOC was calcu-
lated by subtracting the amount of inorganic C (carbonate) from TC concentration. We found a very strong
correlation between MIR predicted soil C and measured soil C (R2 = 0.91 for TC, and R2 = 0.92 for SOC;
n= 47). The residual prediction deviation (RPD= StDEV/root-mean-square error (RMSE)) for TC and SOC was
>2 (2.14 for TC and 2.10 for SOC) which indicates successful prediction [Sinnaeve et al., 2001].

2.4. Statistical Analyses

Before statistical analysis, the data set (n= 473) was randomly split into 384 calibration data, which were used
for training the random forest (RF) regression model and 89 validation data (Figures 3c and 3d) which were
used for evaluating the spatial prediction models. Statistical analyses including bivariate correlation, analysis
of variance, and RF regression analysis were performed using R statistical software [R Core Team, 2016].

Random forests, based on the assemblage of multiple iterations of decision trees, have become a major data
analysis tool that performs well in comparison to single iteration classification and regression tree analysis
[Heidema et al., 2006]. Each tree is made by bootstrapping of the original data set which allows for robust
error estimation with the remaining test set, the so-called Out-Of-Bag (OOB) sample. The excluded OOB sam-
ples are predicted from the bootstrap samples and by combining the OOB predictions from all trees. The RF
algorithm can outperform linear regression, and unlike linear regression, RF has no requirements considering
the form of the probability density function of the target variable [Hengl et al., 2015; Kuhn and Johnson, 2013].
One major disadvantage of RF is that it is difficult to interpret the relationships between the response and
predictor variables. However, RF allows estimation of the importance of variables as measured by the mean
decrease in prediction accuracy before and after permuting OOB variables. The difference between the two
are then averaged over all trees and normalized by the standard deviation of the differences.

First, we trained the random forests regression model with 384 training data set with bootstrapped 5000
trees and five splits in each tree and then the RF model with the lowest error component and with a subset
of optimum numbers of predictors was selected using RF model selection approach [Evans and Cushman,
2009]. “RandomForests” [Liaw and Wiener, 2002] and “rfUtilities” [Evans and Murphy, 2016] packages in the
R statistical computing environment [R Core Team, 2016] were used for all statistical analysis.

2.5. Spatial Mapping of POC and PyC

Both ordinary (OK) and random forest regression kriging (RFK) [Hengl et al., 2015] were used to generate pre-
diction maps of POC and PyC concentration from the calibration data set (n=384) at a resolution of
1 km×1 km throughout forest, planted/cultivated land, grassland/herbaceous land, and shrubland of the
study area. The RFK method combines the RF predicted values with simple kriging (SK) of the regression resi-
duals [Hengl et al., 2015]. The experimental variogram of residuals of the RF regression model was first com-
puted and modeled, and then SK was applied to the residuals to estimate the spatial prediction of the
residuals. The RF regression predicted results, and the kriged residuals were added to estimate the interpo-
lated target variable. Because the distribution of SOC fractions was positively skewed (skewness> 1;
Figures 3a and 3b), we reduced the effect of outliers on variogram properties through the use of robust var-
iograms [Cressie and Hawkins, 1980]. The RFK method was evaluated with the validation data sets (n=89) in
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order to obtain an independent error estimate. We used OK as a benchmark method. Diagnostic measures of
map quality were the mean absolute error (MAE) and root-mean-square error (RMSE).

MAE ¼ 1
n

∑
n

a¼q
z uαð Þ � z uαð Þ*j j (3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

∑
n

a¼1
z uαð Þ � z uαð Þ*½ �2

r
(4)

where n is the number of observation points and z(u) and z(u)* are the observed and predicted values at loca-
tion α. The mean MAE shows if the prediction is biased whereas the RMSE measures the accuracy of the
predictions.

We also modeled SOC and OOC (Table S3 and Figure S3) to calculate the percentage of SOC contributed by
each fraction for the prediction grid. Finally, we developed an index map of vulnerability to SOC mineraliza-
tion by defining the grids with POC:PyC values ≤ 0.5 as very low, 0.5–1.0 as low, 1.0–1.5 as medium, 1.5–2.0 as
high, and ≥ 2.0 as very high. To estimate the area vulnerable to SOC mineralization under different land use
and slope position, we overlaid the vulnerability index, National Land Cover Database (NLCD) land use and
slope position maps.

3. Environmental Data

We assembled a comprehensive set of spatial environmental data to characterize the region and used these
data to predict SOC, PyC, POC, and OOC throughout the study region. These data included terrain, climate,
soil, fire, and land cover as described below.

Figure 3. Frequency distributions and spatial distributions of observed pyrogenic carbon (PyC) and particulate organic car-
bon (POC) of 473 sampling points.
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3.1. Terrain Data

Fordigital terrainmodeling (Figure1),weused
30m spatial resolution digital elevation
model (DEM) data obtained fromaUSGSdata-
base [Multi-Resolution Land Characteristics
Consortium, 2007]. The 30m DEM was
resampled to90mresolution for further analy-
sis. From DEM data (Figure 1a), we calculated
slopegradient (G) (Figure1b), slope length(SL)
(Figure 1c), aspect (A) (Figure 1d), vertical cur-
vature (Cv) (Figure 1e), horizontal curvature
(Ch) (Figure 1f), topographic position index
(TPI) (Figure 1g), and slope position (TSP)
(Figure 1h). We used DEM Surface Tools
[Jenness, 2013] for ArcGIS 10 [Environmental
Systems Research Institute (ESRI), 2011] to cal-
culateG, Cv, Ch, and TSP. Topographic position
indices (TPI) were calculated at each cell of the
DEM by calculating the difference between
the elevation of the cell and the mean eleva-
tion calculated for all cells of a moving rectan-
gular window centered on the cell of interest.
Five topographic positions were calculated
for grid cells ranging from 250 to 2000m

(TPI250, TPI500, TPI1000, TPI1500, and TPI2000). Finally, we developed a topographic slope position (TSP) map by
defining the cells with TPI values ≤�8m as canyon bottoms, cells with TPI values ≥ 8m as ridgelines, and cells
with TPI values between �8 and + 8m as gentle slopes (slope< 6°) or steep slopes (slope ≥ 6°) (Figure 1h) as
described by Dickson and Beier [2007].

3.2. Climate Data

Thirty year (1971–2000) mean annual air temperature (MAT) (Figure 2a) and mean annual precipitation
(MAP) (Figure 2b) were obtained from the Parameter-elevation Regressions on Independent Slopes
Model (PRISM) climate mapping system (Daly et al. [2001]; accessed at http://prism.oregonstate.edu/).
PRISM uses point measurements and a digital elevation model (DEM) to generate gridded estimates of
annual, monthly, and event-based climatic parameters.

3.3. Soil Data

Soil data were derived from the Digital General Soil Map of the United States (STATSGO2; map scale
1:250,000), an inventory of soils and nonsoil areas that occur in a repeatable pattern on the landscape
[Natural Resources Conservation Service (NRCS), United States Department of Agriculture, 2012]. We used the
component weighted mean of silt + clay content for surface soil (Figure 2c) and the soil erodibility factor
(K factor).

3.4. Fire Regime Groups Data

Fire RegimeGroups (FRG) datawereobtained from the LANDFIRE (LF) project also knownas the Landscape Fire
and Resource Management Planning Tools Project (accessed at http://www.landfire.gov/datatool.php). The
FRG data layer characterizes the estimated historical fire regimes within landscapes based on interactions
between vegetation dynamics, fire spread, fire effects, and spatial context. Fire regimes are classified into five
groups (Figure 2d): Fire Regime Group (FRG) I ≤35 year fire return interval, low and mixed severity; FRG
II ≤ 35 yearfire return interval, replacement severity; FRG III 35–200 yearfire return interval, lowandmixedsever-
ity; FRG IV 35–200 year fire return interval, replacement severity; FRG V> 200 year fire return interval and repla-
cement severity; and Indeterminate (unknown) fire regime characteristics.

Table 1. Pearson Correlation Coefficient Values (r) Between
Environmental Variables and Pyrogenic Carbon (PyC) and
Particulate Organic Carbon (POC) for 473 Soil Samples

Variables

r Value

PyC POC

Elevation (ELEV) 0.181*** 0.232***
Slope gradient (G) 0.297*** 0.256***
Slope length (SL) 0.190*** 0.187***
Slope aspect (A) 0.051a 0.029a

Topographic position index (TPI)
TPI250 �0.042a �0.0001a

TPI500 �0.123*** �0.113***
TPI1000 �0.162*** �0.170***
TPI1500 �0.210*** �0.204***
TPI2000 �0.225** �0.213**
Vertical curvature (Cv) �0.067a 0.049a

Horizontal curvature (Ch) �0.007a 0.065a

Temperature (MAT) �0.359*** �0.417***
Precipitation (MAP) 0.491*** 0.312**
NDVI 0.607*** 0.443***
K-factor (Kf) �0.102** �0.131**
Silt + Clay 0.220*** 0.083a

aNot significant.
*p< 0.05.
**p< 0.01.
***p< 0.001.
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3.5. Normalized Difference Vegetation Index

The normalized difference vegetation index (NDVI) data for
themonths of June and July of the year 2000 to 2011, derived
from the Moderate-Resolution Imaging Spectroradiometer
Bands 1 (red) and 2 (near infrared), were obtained from
the NASA Land Processes Distributed Active Archive
Center, USGS/Earth Resources Observation and Science
Center, Sioux Falls, South Dakota (accessed at https://
lpdaac.usgs.gov/get_data). The study region is covered
by six granules of the MOD13Q1 composites. Data down-
load was performed with an R script [R Core Team, 2016],
and postprocessing was performed with ArcPython [ESRI,

2011]. We used the R-package “raster” [Hijmans and van Etten, 2016] to calculate mean NDVI for the time
period as discussed previously (Figure 2e).

3.6. National Land Cover

We used the National Land Cover Database 2006 (NLCD), which was developed using an unsupervised
classification of Landsat Enhanced Thematic Mapper + (ETM+) circa 2006 satellite data. The NLCD
includes 16 land cover classes applied consistently across the conterminous United States at a spatial
resolution of 30m [Fry et al., 2011]. The results were reclassified into nine major classes (Figure 2f):
(1) open water; (2) ice/snow; (2) developed (all developed lands); (4) barren; (5) forest (deciduous, ever-
green, and mixed forest); (6) shrubland; (7) grass/herbaceous; (8) planted/cultivated (crops, pasture, and
hay); and (9) wetlands (woody and herbaceous wetlands).

4. Results
4.1. Descriptive Statistics and Spatial Distribution POC and PyC

The distributions of POC and PyC in the 473 selected soil samples were positively skewed (skewness> 1.5)
and showed statistically significant differences (p< 0.05) from the normal distribution based on the
Kolmogorov-Smirnov (KS) normality test (Figure 3). The POC fraction made up the smallest component of
the SOC (mean of 20.3% and median of 19.2%; Table 2). Concentrations of POC ranged from 0.06 to
18.6mgg�1 soil with a mean of 2.9mgCg�1 soil and standard deviation of 3.1mgCg�1 soil (Figure 3b).
The PyC fraction ranged from 11.8 to 96.6% with a mean of 34.6% and median of 31.9% of the SOC
(Table 2). The concentrations of PyC ranged from 0.3 to 18.0mgg�1 soil with a mean of 4.0mgCg�1 soil
and a standard deviation of 2.9mgCg�1 soil (Figure 3a). There was no sample with a lower percentage of
PyC/SOC than 11.8%, which was much higher than the minimum for other SOC fractions (Table 2).
However, the fraction of SOC comprised of PyC was more variable than for other fractions (Table 2). The

Figure 4. Relationship (a) between pyrogenic soil organic carbon (PyC) and soil organic carbon (SOC) and (b) between PyC
and non-PyC SOC throughout four Western USA states (WY, CO, NM, and KS).

Table 2. Summary Statistics of Percentage of
Particulate Organic (POC), Pyrogenic (PyC), and
Other Organic Carbon (OOC) in Soil Organic
C (N = 473)

POC (%) PyC (%) OOC (%)

Mean 20.5 34.6 47.5
Median 19.2 31.9 46.9
SD 12.3 11.16 12.2
Max 87.1 96.6 85.5
Min 0.1 11.8 0.01
25% 13.9 27.7 41.5
75% 25.8 37.2 51.7
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PyC fraction was highly correlated with both the total SOC (r2 = 0.95; Figure 4a) and with the SOC minus the
PyC fraction (r2 = 0.91; Figure 4b).

Maps of observed concentrations of PyC and POC show clear spatial distribution patterns throughout the
study region (Figures 3c and 3d). High values (75th percentile) of PyC and POC were observed mostly in
the high altitude forested area of the Rocky Mountains and in the Alluvial River and Osage Plains in the east-
ern part of Kansas. The mean PyC and POC were higher in forests than other land cover classes (Figure 5a).
However, the percentages of SOC contributed by the POC and PyC fractions were higher in shrubland and
herbaceous land (Figure 5b). In addition, the PyC and POC concentrations were lower in gentle slope position
(slope< 6°) than in other topographic positions (Figure 5c), and percentage of POC and PyC in the SOC were
lower in steep slope position (Figure 5d). For fire regime groups, the concentration of both POC and PyC were
greatest for FRG-III and FRG-V (Figure 5e). However, the percentage of PyC in the SOC was higher in areas with
FRG-V. This FRG has> 200 year fire return interval with replacement severity and>75%mean top kill within a
typical fire perimeter for a given vegetation type (Figure 5f).

4.2. Factors Affecting Soil PyC and POC

We found that PyC and POC stocks were positively correlated with elevation, slope gradient (G), and slope
length (SL) and negatively correlated with topographic position indexes (TPI) greater than 250m×250m
(Table 1). For both fractions, the highest correlation coefficients (r) with TPI were obtained with the largest

Figure 5. (a, c, and e) Mean and (b, d, f) percentage of total organic carbon contributed by particulate organic carbon (POC)
and pyrogenic carbon (PyC) in relation to land cover, topographic positions, and fire regime groups.
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distance analyzed (2000m; TPI2000). PyC and POC contents were positively and strongly correlated with both
NDVI and monthly mean precipitation (MAP), and negatively correlated with temperature (MAT). Both PyC
and POC showed weak but significant positive correlation with the soil erodibility factor (Kf). Only PyC
showed a weak but statistically significant positive relationship with finer soil texture (silt + clay).

The RF regression analysis using all variables listed in Table 1 explained 32 and 20% variability of PyC and
POC, respectively. The NDVI, MAP, MAT, and elevation (ELEV) were identified as the four most important
variables while FRG, SL, Ch, and A were the four least important variables for predicting PyC (Figure 6a)
and POC (Figure 6e). When we applied RF model selection approach, we found that model with eight pre-
dictors had the lower mean square error (MSE) (Figures 6c and 6g) and explained more the variability
both PyC and POC than the model with all predictors (Figures 6b and 6f). In the best random forests
regression model, NDVI, MAP, MAT, ELEV, soil texture, TSP, NLCD, and TPI were the most important vari-
ables of PyC and the model explained 46% of the variation in PyC (Figure 6d). The most important

Figure 6. (a–d) Importance plots for pyrogenic (PyC) and (e–h) particulate C derived from initial (Figures 6a and 6e) and final (Figures 6d and 6h) random forest
regression models. Bar plots in Figures 6b, 6c, 6f, and 6g show the percentage of the explained variance and mean square error (MSE) of RF models with different
numbers of predictors. (ELEV = elevation; G = slope gradient; SL = slope length; A = aspect; TPI = topographic position index; TSP = topographic slope position;
Cv = vertical curvature; Ch = horizontal curvature; MAT =mean annual temperature; MAP =mean annual precipitation; NDVI = normalized vegetation index;
NLCD = national land cover data; FRG = fire regime group; and Kf = K factor).
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variables for prediction POC were in rank order: NDVI, MAT, MAP, ELEV, G, TSP, NLCD, and TPI and
explaining 28% of the variation (Figure 6h).

4.3. Geospatial Analysis and Mapping of PyC and POC

Figures 7a and 7b show the isotropic variograms with fitted model (solid lines) of PyC and POC (closed
circles) and the residuals of their RF regression models with selected environmental covariables. The var-
iograms of these fractions and their residuals of RF regression models showed a clear spatial dependence
with bounded sills and were fitted well with exponential models. The variance of PyC and POC increases
steadily with increasing lag distance and approaches its sill asymptotically within a range of 79.7 and
65.4 km and autocorrelation may be extended to the effective range of 239.1 and 196.2 km, respectively
(Table 3). However, the residual variogram of PyC showed much shorter range (about 56.8 km shorter
than original) than that of POC (30.5 km shorter range). These results indicate that environmental covari-
ables better explained local variation of PyC than POC. The scatter plots of predicted vs observed values
show that RFK predicted values (Figures 6e and 6f) are more closer to the 1:1 line than that of OK pre-
dicted values (Figures 6c and 6d) and RFK had lower MAE and RMSE values (Table 3). The relative
improvement of RFK over OK was 20% for PyC and 7% for POC.

Maps produced by RFK (Figures 7i and 7j) at a resolution of 1 km×1 km show a similar global pattern and
hot spot locations of both PyC and POC as found using OK (Figures 7g and 7h). However, the RFK maps
were less smooth than the OK maps and thus provide more detail regarding local variability in SOC con-
centration reflecting the effects of environmental covariables. In the high-altitude forested area of the
Rocky Mountains concentrations of both PyC and POC were consistently higher than other locations
within the regions studied. In large portions of the area in the Alluvial River and Osage Plains in eastern
Kansas, the concentration of PyC was higher than POC. From the maps of percentage of SOC contributed
by POC and PyC fractions (Figure 8), we calculated that PyC was the dominant fraction of SOC (≥50% con-
tribution) for 8% of the study area. A large portion of this area was in shrubland with gentle slope under
FRG-V. In contrast, POC dominated less than 1% of the study area. Because POC has a faster turnover time
than other SOC fractions, this small area would likely be highly vulnerable to mineralization of SOC.
Furthermore, from the map of the ratio of POC to PyC (Figure 9a), we estimated about 16% of the

Figure 7. Variogramswith fittedmodels, 1:1 plots of observed versus predicted values and ordinary (OK) and random forest kriging (RFK) predictedmaps of (a, c, e, g,
and i) pyrogenic carbon (PyC) and (b, d, f, h, and j) particulate organic carbon (POC).
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study area is medium to highly vulnerable to SOC mineralization. Most of this area is under grassland and
shrubland with gentle slopes of less than 6%.

5. Discussion

The mean percentage of PyC to SOC is much higher than found previously in central and Western North
America, using a range of different methods for quantification. For example, PyC also quantified by NMR
excluding the fraction >53μm, for five long-term agricultural experiments in Minnesota, Illinois, Texas, and
Oregon consisting of three Mollisols, Vertisol, and Alfisol, was on average 24% of SOC (10–35%) [Skjemstad
et al., 2002]. Across a climosequence of North American prairies, PyC determined by benzene-polycarboxylic
acid (BPCA) contributed a mean of only 9% of SOC across 18 sites, with a very similar value of 95mgg�1 of
SOC for the five samples that fell within our study region [Glaser and Amelung, 2003]. This same study found a
mean of 2.41 g kg�1 of PyC for these five samples, while we found a regional mean of 4.0 g kg�1. Similarly,
across five Ponderosa pine sites with different fire histories within each site in western Montana and northern
Idaho, PyC quantified using chemical oxidation with H2O2/dilute HNO3 comprised only 11% of SOC [Kurth
et al., 2006; DeLuca and Sala, 2006]. Across a soil catena covering both forest and agricultural lands in the
Pacific Northwest of the USA, PyC determined by the same method as in our study ranged from 8 to 27%,
with a mean of 16% of SOC [Jauss et al., 2015]. In comparison, we found that throughout the study region
PyC had a mean of 34.6% of SOC (Table 3). Reisser et al. [2016] recently estimated that global PyC (n= 560)
represent on average 13.7% of the SOC, ranging from 0 to 60%. Because PyC on average has a longer turn-
over time compared to other forms of SOC, such as POC, the high percentage of SOC found to be PyC
throughout this large region of 1,051,029 km2 has important implications for the vulnerability of SOC to
mineralization with ongoing climate change and land management.

Many different methods have been, and are still, used to quantify PyC in soils [Bird, 2015], including the litera-
ture cited above. The NMR-MIR prediction method adopted in our study captures the widest range of PyC
among other chemical or spectroscopic methods [Hammes et al., 2007]; especially with the recent modifica-
tion to include PyC fragments >53μm (see section 2). This method is expected to generate higher estimates
than other PyC quantification approaches cited here, possibly about double the estimates compared to BPCA
or oxidative techniques [Hammes et al., 2007; Bird, 2015]. These methods estimated by MIR have been
demonstrated to be reliable when properly calibrated [Janik et al., 2007; Baldock et al., 2012], have been
recommended recently [Reeves, 2012], and are feasible for such large numbers of samples and are therefore
particularly valuable for regional and landscape studies [e.g., Lehmann et al., 2008; Jauss et al., 2015].

Of all SOC fractions, we found that only PyC showed a weak but statistically significant positive relationship
with finer soil texture (silt + clay), and this variable ranked sixth as variable of the importance RF regression
model. The only previously published data on PyC from this region did not find such a correlation [Glaser
and Amelung, 2003]. However, that study sampled only 18 sites compared to 473 sites in the current study,
and our large sample size likely allowed us to detect a significant but weak association. This result may indi-
cate that long-term stabilization of PyC depends in part on associated with soil minerals, as shown by miner-
alization studies [Bruun et al., 2014], but it might also suggest that other factors are more important in
controlling PyC contents. The amount of aboveground biomass is the most important factor throughout

Table 3. Properties of Fitted Variogram Models and Validation Resultsa

Variables

Variogram Properties Validation Results

Model Co C + Co A Ae MAE RMSE RI

Organic Carbon Ordinary Kriging
PyC Exp 1.97 6.44 79.7 239.1 1.64 2.10
POC Exp 2.44 5.68 65.4 196.2 1.72 2.24
Residuals Random Forest Kriging
PyC Exp 0.73 4.39 22.9 68.7 1.32 1.67 20.3
POC Exp 2.36 4.85 34.9 104.7 1.55 2.09 7.0

aPyC = pyrogenic OC; POC = particulate OC; Exp = exponential; Co = nugget; C + Co = sill; A = range (km); Ae = effective
range (km), range × 3 for exponential model; MAE =mean absolute error; RMSE = root mean square error; and
RI = relative improvement (%) of RMSE of random forest regression kriging over ordinary kriging.
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this large region as indicated by the very
strong association of both PyC and OOC
with NDVI based on the results of (1) cor-
relation analysis, (2) the RF regression
model, and (3) the association with forest
vegetation which has high aboveground
biomass.

In a previously published model of the
fate of PyC, erosion (runoff) was identified
by difference as the dominant flux of PyC,
accounting for 76% of the loss over
100 years [Foereid et al., 2011]. We found
that although soil erodibility (as indicated
by the k factor) was significantly asso-
ciated with PyC concentration, it was not
an important predictor of PyC or other
SOC fractions. However, TPI and TSP were
relatively important. These results suggest
that landscape position may be more
important than soil properties in predict-
ing the impact of erosion and deposition
on SOC fractions, at least for ecosystems
dominated by perennial vegetation.
Furthermore, the finding that TPI at the
largest distance tested (2000m) was a
more significant predictor than TPI at
shorter distances indicates that landscape
processes are important at scales of multi-
ple kilometers across the wide range of
topography, climate, and ecosystems pre-
sent in the study region. However, it is
also likely that more intensive local sam-
pling could provide additional informa-
tion about local-scale factors that affect
SOC fractions such as PyC [Kane et al.,
2007]. Guerena [2015] found significant
changes in PyC distributions in soils of
watersheds with a size of 10 ha over deca-
dal timescales after fire clearing, changing
from greater PyC stocks at higher land-

scape position to accumulate at lower positions. This confirmed the results from the present studies that both
movement and accumulation are important in determining landscape-scale distribution of PyC.

The most important predictor of both PyC and PyC and POC was NDVI. The strong influence of NDVI can also
be seen in the maps developed with RFK (Figures 7i and 7j): the spatial pattern is most similar to that of NDVI
(Figure 2e). The strong relationships between both NDVI and forest cover and PyC and other SOC fractions
likely indicates that organic carbon (OC) inputs to the soil rather than loss due to erosion and mineralization
are the dominant factor explaining variation of all SOC fractions. Furthermore, the finding of the same rank-
ing for both PyC and other OOC indicates that all OC fractions respond similarly to variation in vegetation,
climate, and landscape position. Jauss et al. [2015] found a moderate relationship (r2 = 0.44), between PyC
and POC+OOC for topsoils of 11 sites in Oregon, indicating a weak but relevant landscape-scale connection
between the fractions using the same PyC methodology as used in our study. In our study, we found a much
stronger relationship between PyC and non-PyC SOC (r2 = 0.91) in the topsoil (Figure 4b). In the Great Plains,
Glaser and Amelung [2003] found a strong correlation (r2 = 0.89) between PyC and SOC, which we found to be

Figure 8. Map of the percentage of soil total organic carbon contribu-
ted by (a) pyrogenic carbon (PyC) and (b) particulate carbon (POC).

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003488

AHMED ET AL. SOIL CARBON VULNERABILITY IN WESTERN USA 366



even stronger for our data set (r2 = 0.95). These results support the finding that PyC responds similarly to
variation in vegetation, climate, and landscape position as does the non-PyC portion of SOC.

The very weak association of PyC with FRGmay reflect the complexity of fire effects on PyC, acting both as the
source of PyC but potentially also as a sink if PyC is combusted in a subsequent fire [Ohlson and Tryterud,
2000; Czimczik et al., 2005; DeLuca and Aplet, 2008]. However, it is not clear whether fire always leads to large
reburning of PyC [Santin et al., 2013], even if it is placed on the soil surface [Saiz et al., 2014]. Also, the effects of
fire can be extremely variable over short distances, so the relatively coarse-scale geospatial data on fire
regime groups may not reflect local conditions where the soil samples were taken. However, even with colo-
cated sampling of fire interval and PyC, previous investigations in Montana [Kurth et al., 2006] and Sweden
[Zackrisson et al., 1996] also did not find significant associations between fire return interval and PyC in
forested ecosystems. Fire characteristics could only explain PyC content, if site-specific information was avail-
able [Reisser et al., 2016]. Taken together, our results and those from the literature suggest that FRG may not
be an important predictor of PyC contents in surface soils. However, it should be noted that we addressed
only the lateral movement of PyC in this study. The vertical movement of PyC therefore needs to be
addressed for better understanding the effect of FRG on PyC.

The relatively high percentage of persistent PyC along with the relatively low percentage found as easily
mineralizable POC has important implications for the vulnerability of SOC to mineralization under ongoing
climate change and landmanagement practices. The PyC has been found to be virtually unchanged over sev-
eral decades of cultivation [Skjemstad et al., 2004]. However, there was substantial variation in the percentage
of PyC and POC fractions in SOC and therefore in the vulnerability index derived from them. Only a tiny frac-
tion of the entire region (<1%) was found to be highly vulnerable to SOC mineralization with POC as the
dominant fraction of SOC (>50%). A larger area of 16% of the region had medium to high vulnerability, con-
centrated in northeast Wyoming, southwest Wyoming, and northeast Colorado. The southernmost portion of
the region, including most of New Mexico, was found to have a comparatively very low vulnerability to SOC
mineralization (Figure 9). Cultivated and forest lands had mostly low vulnerability with some very low vulner-
ability to SOC mineralization, whereas grasslands and shrublands had nearly not only all of the medium vul-
nerability area but also substantial areas of very low vulnerability (Figures 8b–8f). These results suggest that

Figure 9. (a) Ratio of particulate organic carbon (POC) to pyrogenic carbon (PyC) showing the vulnerability of soil C degradation and calculated area under five
vulnerability classes in relation to topographic position and (b) planted/cultivated, (c) forest, (d) grass/herbaceous and (e) shrub land.
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the most highly managed lands generally have low vulnerability to further SOC mineralization, while uncul-
tivated grasslands and shrublands have much more variability in vulnerability, ranging from medium to very
low. The absolute values of such vulnerability indices greatly depend on the methods used to isolate PyC and
POC and have to be evaluated in this context, whereas the changes between locations likely allow more
robust interpretation.

Medium- and high-vulnerability locations were concentrated in just three contiguous portions of the
region (Figure 9a). These regions are different from the spatial patterns of each of the environmental
variables (Figures 1 and 2). This result demonstrates that combining environmental data with analysis
of SOC fractions using geostatistical analysis can improve understanding of the vulnerability of SOC to
loss due to ongoing climatic changes as well as opportunities to increase SOC sequestration with spa-
tially targeted management practices.

6. Conclusions

We found that the mean PyC fraction in A horizon comprised approximately one third of the SOC on aver-
age but ranged widely from 11.8 to 96.6%. Much variation in the recalcitrant pyrogenic soil carbon fraction
could be predicted based on vegetation, climate, and terrain variables. This result is important because
PyC is often refractory and thus less susceptible to mineralization compared to other soil carbon fractions.
Using the ratio of POC to PyC as an index of the vulnerability of soil carbon to mineralization, we found
that 16% of the study area throughout four Western USA states is moderately to highly vulnerable to soil
organic carbon mineralization.

Further application of methods such as ours will improve the understanding of spatial patterns of SOC and its
fractions. Improved maps of SOC fractions, including PyC are needed for improved parameterization of OC
cycling models [Falloon et al., 2000; Lehmann et al., 2008; Tonitto et al., 2016]. The combination of spatial ana-
lyses with OC cycling models can improve understanding of the vulnerability of SOC to mineralization due to
ongoing climatic changes as well as opportunities to increase SOC sequestration with spatially targeted
management practices.
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